SISTEM PAKAR DETEKSI KERUSAKAN NERACA DIGITAL MENGGUNAKAN METODE FORWARD CHAINING BERBASIS WEB DI PT SHARMA INDOTAMA INDONESIA

Muhamad Ihsanudin¹, Ajar Rohmanu², Endang³

^{1,2,3} Universitas Panca Sakti Bekasi

Jl. Tegal Danas Deltamas, Cikarang Pusat, Bekasi (021) 84324010

Email: ¹ mihsanudin90@ gmail.com, ² ajarrohmanu@ gmail.com, ³ psucikarang@ gmail.com

ABSTRAK

Penelitian ini bertujuan untuk merancang sistem pakar berbasis web yang mampu mendeteksi kerusakan pada neraca digital menggunakan metode forward chaining di PT Sharma Indotama. Sistem ini dikembangkan untuk memfasilitasi teknisi dalam mendiagnosa masalah pada neraca digital dengan lebih cepat dan tepat. Melalui analisis data kerusakan sebelumnya dan konsultasi dengan pakar, sistem ini dapat memberikan rekomendasi perbaikan berdasarkan gejala yang teridentifikasi. Metode forward chaining diterapkan untuk memproses aturan yang ada, dimulai dari fakta awal hingga mencapai kesimpulan akhir. Hasil uji menunjukkan bahwa sistem ini mampu memberikan diagnosa yang sesuai dengan kondisi aktual, serta mempercepat proses identifikasi kerusakan. Implementasi sistem ini diharapkan dapat meningkatkan efisiensi dalam perawatan neraca digital di perusahaan, mengurangi waktu tidak beroperasi, dan menekan biaya perbaikan.

Kata Kunci: Sistem Pakar, Deteksi Kerusakan, Neraca Digital, Forward Chaining, Berbasis Web, PT Sharma Indotama Indonesia.

ABSTRACT

This research aims to design a web-based expert system that is able to detect damage to digital balance sheets using the forward chaining method at PT Sharma Indotama. This system was developed to facilitate technicians in diagnosing problems with digital balances more quickly and precisely. Through analysis of previous damage data and consultation with experts, this system can provide recommendations for improvements based on identified symptoms. The forward chaining method is applied to process existing rules, starting from the initial facts until reaching the final conclusion. Test results show that this system is able to provide a diagnosis that is appropriate to actual conditions, as well as speeding up the damage identification process. The implementation of this system is expected to increase efficiency in maintaining digital balance sheets in companies, reduce downtime and reduce repair costs.

Keywords: Expert System, Damage Detection, Digital Balance, Forward Chaining, Web Based, PT Sharma Indotama Indonesia

1. PENDAHULUAN

Neraca digital merupakan alat pengukur yang menggunakan teknologi digital untuk menghasilkan pembacaan berat dengan tingkat akurasi yang tinggi. Berbeda dengan neraca mekanik yang menggunakan sistem pegas atau sistem keseimbangan tradisional, neraca digital menggunakan sensor dan elektronik untuk mengukur berat dengan cepat dan presisi [1].

PT Sharma Indotama Indonesia adalah perusahaan yang bergerak di bidang kalibrasi

alat ukur, pengadaan alat ukur, servis alat ukur, dan penyelenggaraan pelatihan bersertifikat. Dalam operasinya, perusahaan ini menggunakan berbagai perangkat dan alat ukur yang vital untuk menjamin akurasi dan keandalan hasil kalibrasi serta pelatihan yang diselenggarakan. Salah satu alat yang digunakan adalah neraca digital, yang memiliki peran penting dalam proses kalibrasi dan pengukuran. Namun, seperti halnya perangkat teknologi lainnya, neraca digital juga rentan mengalami kerusakan atau gangguan teknis. Kerusakan pada neraca digital

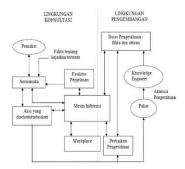
ISSN 2527-5240 129

dapat mengakibatkan kesalahan dalam hasil pengukuran. Oleh karena itu, penting untuk memiliki sistem yang dapat mendeteksi kerusakan pada neraca digital secara cepat dan akurat.

Sistem pakar merupakan sebuah sistem komputer yang memanfaatkan basis pengetahuan yang tersedia serta kemampuan inferensi, mampu mengatasi permasalahan yang sebelumnya hanya bisa diselesaikan oleh ahli manusia. Dengan memperhitungkan informasi yang terperinci tentang ciri-ciri kerusakan pada neraca digital, sistem ini menjadi alat yang handal dalam mengidentifikasi, mendiagnosa, dan mengatasi kendala yang timbul [2].

Penerapan sistem pakar dengan metode forward chaining memiliki potensi besar untuk meningkatkan efisiensi dalam mendeteksi dan memperbaiki kerusakan pada neraca digital. Dengan adanya sistem ini, teknisi yang pemeliharaan dan bertanggung jawab atas perbaikan peralatan dapat dengan mengidentifikasi masalah yang muncul. mengurangi waktu downtime, dan memastikan bahwa neraca digital dapat beroperasi dengan akurat dan andal.

2. TINJAUAN PUSTAKA


2.1 Sistem Pakar

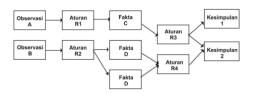
Sistem pakar merupakan bagian dari kecerdasan buatan yang menggunakan pengetahuan manusia yang telah diatur dalam suatu sistem untuk menyelesaikan masalah yang biasanya memerlukan keahlian khusus. Sistem ini dapat menggantikan atau membantu pekerjaan seorang pakar dalam bidang tertentu [3].

Sistem pakar memiliki dua komponen utama yaitu: basis pengetahuan (knowledge base) dan alat untuk pengambilan kesimpulan (inference engine). Biasanya pengetahuan didapat dari akumulasi pengetahuan pada bidang tertentu suatu pakar. Pengetahuan diartikan sebagai kumpulan dari data-data dan himpunan aturan untuk memanipulasi atau mengolah data untuk menjadi pengetahuan baru [4]. Berikut komponen utama yang ada pada sistem pakar:

2.2 Deteksi

Deteksi adalah proses atau tindakan mengidentifikasi adanya sesuatu, seperti objek, situasi, atau perubahan kondisi, sering kali menggunakan alat atau metode tertentu. Adapun tujuan dari deteksi adalah menyelesaiakan suatu

Gambar 1 Arsitektur Sistem Pakar


masalah dengan berbagai cara tergantung metode yang diterapkan sehingga menghasilkan sebuah solusi [5].

2.3 Neraca

Neraca merupakan alat elektronik atau nonelektronik yang berfungsi untuk melakukan pengukuran suatu berat bahan.. Seperti neraca pada umumnya yang masih memberikan pembacaan nilai berat bahan serta memasukkan kode bahan menggunakan Keypad secara manual. Sehingga yang tampil informasi pada layar LCD merupakan nilai berat bahan serta total harga bahannya [1].

2.4 Forward Chaining

Forward Chaining merupakan metode yang digunakan dalam merancangan aplikasi sistem pakar untuk melakukan proses penelusuran atau penalaran ke depan [6]. Berikut ini proses metode forward chaining yang dapat dilihat pada gambar di bawah ini:

Gambar 2 Proses Forward Chaining

2.5 Pohon Keputusan

Menurut Berry & Gordon,"Pohon keputusan merupakan salah satu metode klasifikasi yang popular karena dapat dengan mudah diinterpretasi oleh manusia. Pohon keputusan adalah sebuah struktur yang dapat digunakan untuk membagi kumpulan data yang besar menjadi himpunanhimpunan record yang lebih kecil dengan menerapkan serangkaian aturan keputusan" [7].

2.6 Website

Website adalah kumpulan halaman web yang saling berhubungan dan dapat diakses melalui

internet menggunakan URL yang umum pada domain yang sama. Setiap halaman web biasanya berisi informasi berupa teks, gambar, video, dan elemen multimedia lainnya yang dapat diakses oleh pengguna melalui peramban web [8].

2.7 PHP (Hypertext Preprocessor)

PHP adalah bahasa skrip server-side yang dirancang untuk pengembangan web. PHP biasanya digunakan untuk membuat halaman web dinamis yang dapat berinteraksi dengan basis data dan menyediakan konten yang dihasilkan secara dinamis kepada pengguna [9].

2.8 Basis Aturan

Metode ini menggunakan aturan-aturan if-then yang ditentukan oleh pakar untuk mendeteksi kondisi atau kejadian tertentu. Aturan-aturan ini disimpan dalam basis pengetahuan dan dievaluasi oleh mesin inferensi [10].

2.9 Database

Sebuah database adalah kumpulan data yang terorganisir secara terstruktur untuk memungkinkan akses, pengelolaan, dan pembaruan data dengan efisien. Data dalam database direpresentasikan dalam tabel yang terdiri dari baris (record) dan kolom (field), dan dapat diakses atau dimanipulasi menggunakan bahasa kueri seperti SQL [11].

2.10 MvSOL

MySQL merupakan server database yang mendukung multi-pengguna dan multi-threaded, sehingga memiliki ketangguhan yang tinggi. Dengan beragam fitur yang dimilikinya, MySQL mampu bersaing dengan database komersial. MySQL juga menjadi pilihan utama sebagai database bagi banyak pengguna PHP [12].

2.11 Laragon

Laragon adalah salah satu dari banyak paket perangkat lunak yang dirancang untuk menyediakan lingkungan pengembangan web lokal. Lingkungan ini memungkinkan pengembang mengembangkan dan menguji situs web atau aplikasi web tanpa perlu mengakses server internet secara langsung. Hal ini memberikan keuntungan dalam pengembangan, debugging, dan pengujian aplikasi web sebelum diterapkan ke server produksi [13].

2.12 Black Box Testing

Black Box Testing adalah salah satu metode pengujian perangkat lunak yang berfokus pada fungsi input dan output dari perangkat lunak tanpa memperhatikan struktur internal atau kode program [14].

Tabel 3 Spesifikasi Neraca Digital Merek Fujitsu

Ite	m No	Capacity (g)	Readibility (g)	Repeatability (g)	Linearity (°C)	Work temp (°C)	Pan size (mm)	Housing scale (mm)
FSR	-B620	620	0,01	±0.01	±0.02	10-35	Ø133	156×157×157
FSR-	B1200	1200	0,01	±0.01	±0.02	10-35	Ø133	156×157×158
FSR-	B2200	2200	0,01	±0.03	±0.02	10-35	156×156	156×157×159

3. METODE PENELITIAN

Dalam penelitian ini dibagi menjadi tiga tahapan, diantaranya yaitu: observasi, wawancara, studi kasus. Pada tahapan pertama adalah tahap observasi, yaitu pengumpulan data pakar dengan mengamati secara langsung atau mendiagnosis gejala dan kerusakan pada neraca digital. Tahap kedua adalah wawancara, pada tahapan ini dikulakuakn identifikasi masalah dengan cara mewawancarai mengajukan beberapa pertanyaan kepada pakar terkait spesifikasi neraca digital, gejala kerusakan, jenis kerusakan, penyebab dan solusi pada neraca digital. Tahapan ketiga yaitu studi literatur mengumpulkan data dengan melakukan kajian mendalam terhadap literatur atau sumber yang ada untuk memahami dalam untuk membuat sistem pakar deteksi kerusakan neraca digital.

4. PEMBAHASAN

4.1 Data Hasil Peneltian

Berikut ini data yang diperoleh dari metode pengumpulan data yang sudah dilakukan:

4.1.1 Spesifikasi Neraca Digital

Tabel 1 Spesifikasi Neraca Digital Merek CAS

Model	JCS-3	JCS-6	JCS-15	JCS-30	
Max Capacity	3Kg*0.1g	6Kg*0.2g	15Kg*0.5g	30Kg*1g	
Display Digit		6 (Weig	ht)		
Display Type		LCD			
Weighing Type	Loadcell				
Power	AC Adapter 220V Rechargeable Battery				
Operating Temperature	10°C ~ +40°C				
Platter Size	260(W)*210(D)				
Dimension	260(W)*295(D)*137(H)				
Product Weight	3.2Kg				

Tabel 2 Spesifikasi Neraca Digital Merek AND

Model	Capacity (Kg)	Resolution (g)	Pan Size (mm)
HW-10KGL	10	1	250×250
HW-60KGL	60	5	330×424
HW-100KGL	100	10	390×530

Sistem pakar akan dirancang untuk mendeteksi kerusakan pada neraca digital secara spesifik diantaranya: merek CAS (tipe JCS-3, JCS-6, JCS-15, JCS-30), merek AND (tipe HW-10KGL, HW-

ISSN 2527-5240 131

60KGL, HW-100KGL) dan merek Fujitsu (tipe FSR-B620, FSR-B1200, FSR-B2200), tanpa memperluas cakupan pada alat ukur lainnya. Berikut tabel spesifikasi masing – masing merek dan tipe neraca digital:

4.1.2 Gejala dan Kerusakan Neraca Digital

Tabel 4 Gejala Kerusakan

Id	Inisial	Gejala	
1	G1	Neraca tidak dapat menyala	
2	G2	Layar neraca tidak menampilkan angka	
3	G3	Layar berkedip-kedip	
4	G4	Angka yang ditampilkan tidak stabil	
5	G5	Timbangan tidak akurat	
6	G6	Berat tidak berubah meskipun ada penambahan beban	
7	G 7	Terdengar suara beep saat menimbang	
8	G8	Error kode muncul di layar	
9	G9	Berat tidak tepat saat diukur	
10	G10	Berat berubah sendiri	
11	G11	Tampilan layar buram	
12	G12	Layar mati total	
13	G13	Timbangan over-load	
14	G14	Tombol tidak berfungsi	
15	G15	Sensor beban tidak berfungsi	

Tabel 5 Jenis Kerusakan, Penyebab dan Solusi

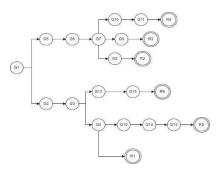
Ιd	Inisial	Kerusakan	Penyebab	Sofissi
1	Pl	Kerusakan pada power supply	Kerusakan pada adaptor atau kahel daya. Tegangan listrik yang tidak stahil. Komponen internal catu daya mengalami kerusakan atau korsleting	Periksa kondui kabel daya dan adaptor. Ganti jika ditemukan kerusukan. Gunakan stahikar untuk mengatur tegangan listrik. Periksa komponen internal catri daya, dan ganti komponen yang rusak.
2	P2	Kerusakan pada load cell	Sensor mengalami kerusakan fisik akibat penanganan yang kasar. Penumpukan kotoran atas debu pada sensor. Sensor mengalami kegagalan kalibrasi.	Berihkan sensor dari kotoran dan debu secara hati-hati. Lakukan kalibrasi ulang sensor menggunakan prosedur yang benar. Ganti sensor jika ditemukan kerusakan fisik.
3	P3	Kerusakan pada unit pengukur (Measurement Unit)	Kerusakan pada rangkaian elektronik pengukur. Kesalahan kalibrasi pada unit pengukur. Paparan terhadap kelembapan atau subu ekstrem yang merusak komponen.	Lakokan kalibrasi ulang pada unit pengukor. Periksa rangkaian elektronik, dan ganti komponen yang rusak. Jaga neraca digital dari paparan kelembapan atas subu ekstrem.
4	P4	Kerusakan pada layar (Display Unit)	Konektor layar longgar atau rusak. Layar mengalami kerusakan akibat jatuh atau tekanan. Kerusakan pada deiver layar atau komponen elektronik terkait.	Periksa konektor layar dan pastikan terpasang dengan baik. Ganti layar jika ditemukan setak atas kerusakan fisik lainnya. Ganti driver layar atas komponen elektronik yang rusak.
5	P5	Kerusakan pada rangkaian internal	Kerusakan pada papan sirkuit utama (mainboard), Korsleting akibat kelembapan atau kerusakan fisik. Kerusakan pada mikroprosesor atau komponen utama lainnya.	Periksa papan sirkuit utama, dan ganti jika ditemukan kerusakan. Pastikan tidak ada kelembapan atas korosi pada komponen. Ganti mikroprosesor atas komponen utama yang rusak.
6	P6	Kerusakan akibat over-load	Melerakkan beban yang melebihi kapasitas maksimum neraca. Penggunasa berakang dalam kondisi beban berat yang melebihi batas. Pengaturan kalibrasi yang tidak sesusi dengan kapasitas neraca.	Pastikan patrik tidak melebihi kapasitas bekan maksimun neraca. Laksikan kalibrasi ulang sesusi dengan kapasitas bekan yang benar. Ganti komponen yang rusak akhat over-load.

4.2 Rancangan Sistem Pakar

Perancangan sistem ini bertujuan untuk mengembangkan solusi perangkat lunak yang mampu memenuhi kebutuhan pengguna secara efektif dengan memperhatikan aspek fungsionalitas, efisiensi, dan skalabilitas.

4.2.1 Basis Aturan

Basis aturan ini berfungsi sebagai kerangka kerja yang menetapkan kondisi-kondisi tertentu yang harus dipenuhi serta tindakan-tindakan yang perlu dilakukan ketika kondisi tersebut terpenuhi.


Tabel 6 Basis Aturan

4.2.2 **Pohon**

Rules	Kaidah Proses
R1	G1, G2, G3, G4 (P1)
R2	G1,G5, G6, G7,G8 (P2)
R3	G1,G5, G6, G7,G9 (P3)
R4	G1,G5, G6, G7, G10, G11 (P4)
R5	G1, G2, G3, G10, G14, G15 (P5)
R6	G1, G2, G3,G12, G13 (P6)

Keputusan

Pohon keputusan adalah alat yang digunakan untuk memodelkan berbagai pilihan dan hasil dalam pengambilan keputusan, di mana setiap cabang mewakili pilihan yang diambil berdasarkan kondisi tertentu, dan setiap simpul akhir menghasilkan keputusan atau prediksi yang diharapkan.

Gambar 3 Pohon Keputusan

4.2.3 **Desain Database**

a. Tabel gejala berisi daftar gejala atau indikator yang bisa muncul pada neraca digital yang mengalami kerusakan.

Tabel 7 Gejala

Field	Jenis	Size	Keterangan	Extra
gej_id	Int		Primary Key	Auto Increment
gej_inisial	Varchar	10	-	-
gei nama	Varchar	255	_	_

b. Tabel kecocokan berisi kecocokan (match table) dalam sistem pakar dengan metode forward chaining untuk deteksi kerusakan neraca digital adalah tabel yang digunakan untuk menyimpan nilai berdasarkan gejala atau informasi yang dimasukkan oleh pengguna.

Tabel 8 Kecocokan

Field	Jenis	Size	Keterangan	Extra
kec_id	Int		Primary Key	Auto Increment
kec_alternatif	Int	-	-	-
kec_gejala	Int	-	-	-
kec nilai	Int	-	-	-

- c. Tabel alternatif ini berisi jenis kerusakan, solusi dan cara untuk memperbaiki.
- d. Tabel tmp_kecocokan digunakan untuk menyimpan sementara hasil pencocokan atau evaluasi saat proses inferensi sedang berlangsung dalam sistem pakar.

Tabel 9 Alternatif

Field	Jenis	Size	Keterangan	Extra
alt_id	Int		Primary Key	Auto Increment
alt_inisial	Varchar	255	-	-
alt_nama	Varchar	255	-	-
alt_penyebab	Text	-	-	-
alt_solusi	Text	-	-	

Tabel 10 tmp_kecocokan

Field	Jenis	Size	Keterangan	Extra
alternatif	Varchar	20	-	
gejala	Varchar	10	-	-
nilai	Int	-	-	-

e. Tabel admin ini membantu dalam mengatur dan mengelola pengguna yang memiliki akses administratif ke sistem pakar, memastikan bahwa hanya mereka yang berwenang yang dapat mengubah atau mengakses informasi sensitif dan pengaturan sistem secara keseluruhan.

Tabel 11 Admin

Field	Jenis	Size	Keterangan	Extra
id	Int		Primary Key	Auto Increment
nama	Varchar	255	-	-
email	Varchar	255	-	-
username	Varchar	255	-	-
password	Varchar	255	-	-

f. Tabel user ini membantu dalam mengelola dan memantau pengguna yang menggunakan sistem pakar, memastikan bahwa pengguna memiliki akses yang sesuai dengan peran atau level mereka dan memberikan informasi yang diperlukan untuk keperluan sistem dan layanan yang disediakan.

Tabel 12 User

Field	Jenis	Size	Keterangan	Extra
user_id	Int		Primary Key	Auto Increment
user_nama	Varchar	255	-	-
user_hp	Varchar	255	-	-
user hasil	Int	-	-	-

Tabel 13 users input Interface Halaman Daftar User

Field	Jenis	Size	Keterangan	Extra	
id	Int		Primary Key	Auto Increment	
user	Int	-	-	-	
gejala	Varchar	11	-	-	
nilai	Int	-	-	-	

g. Tabel user_input ini membantu dalam melacak dan menyimpan informasi yang

Gambar 4 Desain Interface Menu Utama

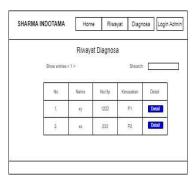
diberikan oleh pengguna, yang nantinya akan digunakan sebagai data masukan untuk melakukan inferensi dan memberikan diagnosa atau rekomendasi dalam sistem pakar.

4.2.4 Desain Interface

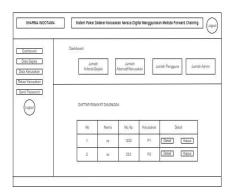
 Halaman utama merupakan tampilan pertama yang diakses oleh pengguna setelah masuk ke dalam sistem.

- b. Halaman daftar user memasukan nama dan no.hp pada halaman login diagnosa sebelum melakukan input gejala.
- c. Halaman login admin memasukan username dan password agar bisa melnjutkan ke panel admin dan kelola data.

ISSN 2527-5240 133


Gambar 6 Desain Interface Halaman Login Admin

 d. Halaman diagnosa menampilkan pertanyaan berupa gejala – gejala kerusakan pada neraca digital.


Gambar 7 Desain Interface Halaman Diagnosa

e. Halaman riwayat diagnosa menampilkan riwayat hasil diagnosa kerusakan pada neraca digital.

Gambar 8 Desain Interface Halaman Riwayat Diagnosa

f. Panel Admin mengizinkan administrator untuk mengelola basis data, termasuk penambahan, pengeditan, dan penghapusan gejala, kerusakan, dan aturan.

Gambar 9 Desain Interface Halaman Admin

4.3 Implementasi Sistem Pakar

a. Halaman Utama

Gambar 10 Halaman Utama

Gambar 11 Daftar User

- b. Daftar User
- c. Login Admin

Gambar 12 Login Admin

d. Halaman Diagnosa

Gambar 13 Halaman Diagnosa

e. Halaman Riwayat Diagnosa

Gambar 14 Halaman Riwayat Diagnosa

f. Panel Admin

Gambar 15 Panel Admin

ISSN 2527-5240 135

4.4 Penujian Sistem

4.4.1 Black Box Testing

Tabel 14 Black Box Testing

No	Fungsi yang Diuji	Deskripsi	Input	Output	Status
1	Login Admin	Memastikan bahwa sistem menerima dan memverifikasi kredensial pengguna	Username dan password yang benar	Sistem mengarahkan ke halaman panel setelah login berhasil	Berhasil
2	Login Admin	Memastikan bahwa sistem menolak dan memverifikasi kredensial pengguna	Username dan password yang salah	Sistem mengarahkan ke halaman utama	Berhasil
3	Input Gejala	Memastikan sistem menerima input gejala dengan benar	Daftar gejala yang diamati oleh pengguna	Gejala diterima dan diproses oleh sistem	Berhasil
4	Proses Diagnosa	Memastikan proses inferensi berjalan dengan benar	Data gejala yang dimasukkan	Sistem memberikan diagnosa yang sesuai dengan data gejala yang diberikan	Berhasil
5	Halaman Riwayat Diagnosa	Memastikan riwayat diagnosa disimpan dan ditampilkan dengan benar	Pilih menu riwaya	Riwayat diagnosa tampil lengkap sesuai dengan diagnosa yang dilakukan	Berhasil
6	Daftar User	Memastikan bahwa sistem menerima dan menyimpan data pengguna	Nama No Handphone	Sistem mengarahkan ke halaman diagnosa setelah input data	Berhasil
7	Halaman Admin	Memastikan fitur administrasi berjalan dengan baik	Akses halaman admin	Halaman admin dapat diakses dan digunakan untuk mengelola data sistem	Berhasil
8	Deteksi Kerusakan pada Power Supply	Memastikan sistem dapat mendeteksi dan menangani kerusakan pada power supply	Simulasi kerusakan pada adaptor atau kabel daya	Sistem menampilkan pesan "Kerusakan pada Power Supply" dan memberikan solusi perbaikan	Berhasil
9	Deteksi Kerusakan pada Load Cell	Memastikan sistem dapat mendeteksi dan menangani kerusakan pada load cell	Simulasi kerusakan pada sensor load cell	Sistem menampilkan pesan "Kerusakan pada Load Cell" dan memberikan solusi perbaikan	Berhasil
10	Deteksi Kerusakan pada Unit Pengukur (Measurement Unit)	Memastikan sistem dapat mendeteksi dan menangani kerusakan pada unit pengukur	Simulasi kesalahan kalibrasi atau kerusakan pada unit pengukur	Sistem menampilkan pesan "Kerusakan pada Measurement Unit" dan memberikan solusi perbaikan	Berhasil
11	Deteksi Kerusakan pada Layar (Display Unit)		Simulasi kerusakan pada konektor atau layar	Sistem menampilkan pesan "Kerusakan pada Layar" dan memberikan solusi perbaikan	Berhasil
12	Deteksi Kerusakan pada Rangkaian Internal	Memastikan sistem dapat mendeteksi dan menangani kerusakan pada rangkaian internal	Simulasi kerusakan pada papan sirkuit atau rangkaian lainnya	Sistem menampilkan pesan "Kerusakan pada Rangkaian Internal" dan memberikan solusi perbaikan	Berhasil
13	Deteksi Kerusakan akibat Overload	Memastikan sistem dapat mendeteksi dan menangani kerusakan akibat overload	Simulasi beban yang melebihi kapasitas neraca	Sistem menampilkan pesan "Kerusakan akibat Overload" dan memberikan solusi perbaikan	Berhasil
14	Edit Data Gejala Kerusakan	Memastikan fitur edit data pada panel berjalan dengan baik	Perubahan data gejala kerusakan	Data gejala kerusakan bisa diubah dan tersimpan	Berhasil
15	Tambah Data Gejala Kerusakan	Memastikan fitur tambah data pada panel berjalan dengan baik	Data gejala kerusakan	Data gejala kerusakan bertambah dan tersimpan	Berhasil
16	Edit Data Kerusakan	Memastikan fitur tambah data pada panel berjalan dengan baik	Perubahan data kerusakan	Data kerusakan bisa diubah dan tersimpan	Berhasil
17	Tambah Data Kerusakan	Memastikan fitur tambah data pada panel berjalan dengan baik	Data kerusakan	Data kerusakan bertambah dan tersimpan	Berhasil
18	Edit Relasi	Memastikan fitur edit pada data relasi dapat berjalan dengan baik	Menginput Ya/Tidak sesuai dengan basis aturan	Edit relasi tersimpan sesuai hasil input	Berhasil
19	Logout Admin	Memastikan sistem melakukan logout dengan benar	Pilih menu logout	Pengguna diarahkan ke halaman utama setelah logout	Berhasil

5. KESIMPULAN

Berdasarkan hasil penelitian dan implementasi sistem pakar untuk deteksi kerusakan neraca digital menggunakan metode forward chaining berbasis web di PT Sharma Indotama Indonesia, dapat ditarik beberapa kesimpulan sebagai berikut:

- Sistem pakar deteksi kerusakan neraca a. digital berbasis web di PT Sharma Indotama Indonesia dirancang dengan mengintegrasikan hasil observasi dan laboratorium pengalaman praktisi. Implementasi berbasis web meningkatkan aksesibilitas, memungkinkan melakukan identifikasi dan perbaikan dengan lebih cepat dan tepat.
- b. Metode forward chaining diterapkan untuk melakukan inferensi berdasarkan fakta yang diberikan oleh pengguna. Sistem ini mencocokkan data input dengan aturan dalam basis pengetahuan, menghasilkan diagnosa yang akurat dan sesuai dengan kondisi nyata.
- c. Evaluasi menunjukkan bahwa sistem pakar ini efektif dalam mendukung teknisi, meningkatkan efisiensi dan akurasi dalam identifikasi dan perbaikan kerusakan. Sistem ini berhasil mengurangi waktu diagnostik dan meningkatkan kualitas layanan di PT Sharma Indotama Indonesia

DAFTAR PUSTAKA

- [1] W. K. Dhanneswara Yoga and A. Farida, "Sistem pencatatan hasil timbangan menggunakan sensor," *J. Jartel*, vol. 10, no. 1, pp. 13–19, 2020.
- [2] M. I. Pati, S. Defit, and G. W. Nurcahyo, "Sistem Pakar dengan Metode Forward Chaining untuk Diagnosis Penyakit dan Hama Tanaman Semangka," *J. Sistim Inf. dan Teknol.*, vol. 2, pp. 102–107, 2020, doi: 10.37034/jsisfotek.v2i4.30.
- [3] K. Solecha, J.- Jefi, H. Hendri, E. Badri, and A. Haidir, "Sistem Pakar Untuk Mendeteksi Kerusakan Komputer Dengan Metode Forward Chaining," *J. Infortech*, vol. 3, no. 2, pp. 164–170, 2021, doi: 10.31294/infortech.v3i2.11801.
- [4] J. N. Sitompul, J. D. M. Saragih, and A. M. H. Pardede, "SISTEM PAKAR KONSELING SISWA SMA," vol. 6, no. 1, 2021.
- [5] C. Darwin, "This is a reproduction of a library book that was digitized by Google as part of an ongoing effort to preserve the information in books and make it universally

- accessible. https://books.google.com," Oxford Univ., vol. XXX, p. 60, 1895.
- D. A. Fauzy, I. Iskandar, J. Rahmadhan, [6] and R. Priambodo, "Aplikasi Bengkel Motor Dengan Sistem Pakar Menggunakan Metode Forward Chaining," J. Sisfokom (Sistem Inf. dan Komputer), vol. 9, no. 1, 89–96. 2020. 10.32736/sisfokom.v9i1.783.
- [7] P. B. N. Setio, D. R. S. Saputro, and Bowo Winarno, "Klasifikasi Dengan Pohon Keputusan Berbasis Algoritme C4.5," Prism. Pros. Semin. Nas. Mat., vol. 3, pp. 64-71, 2020.
- [8] Mira Orisa, Ahmad Faisol, and Mochammad Ibrahim Ashari, "Perancangan Website Company Profile Menggunakan Design Science Research Methodology (Dsrm)," J. Inform. Teknol. dan Sains, vol. 5, no. 1, pp. 160-164, 2023, doi: 10.51401/jinteks.v5i1.2576.
- A. Hidayat, A. Yani, Rusidi, and Saadulloh, [9] "Membangun Website Sma Pgri Gunung Raya Ranau Menggunakan Php Dan Mysql," JTIM J. Tek. Inform. Mahakarya, vol. 2, no. 2, pp. 41–52, 2019.
- C. Grosan and A. Abraham, "Rule-Based [10] Expert Systems," Intell. Syst. Ref. Libr., vol. 17, pp. 149–185, 2011, doi: 10.1007/978-3-642-21004-4 7.
- M. Riyan Dirgantara, S. Syahputri, and A. [11] Hasibuan, "Pengenalan Database Management System (DBMS)," J. Ilm. Multidisipline, vol. 1, no. 6, pp. 300-301, [Online]. Available: https://doi.org/10.5281/zenodo.8123019
- S. Habisal, A. Sinaga, and A. Saputra, [12] "Sistem Pengolahan Data Perilaku Siswa Dengan Penerapan Kum Di Sman 2 Dumai Berbasis Web," INFORMaTIKa, vol. 10, 1, p. 48, 2018, no. doi: 10.36723/juri.v10i1.92.
- R. Andarsyah, C. Yuda Pratama, and H. D. [13] "Implementasi Kishendrian. Coverage Pada Chatbot Telegram Sebagai Media Alternatif Sistem Informasi," J. Tek. Inform., vol. 14, no. 2, p. 9568, 2022.
- [14] M. Kumar, A. Professor, S. Kumar Singh, R. K. Dwivedi, and A. Professor, "A Comparative Study of Black Box Testing and White Box Testing Technique," Int. J. Adv. Res. Comput. Sci. Manag. Stud., vol. 3, no. 10, pp. 32-44, 2015, [Online]. Available: www.ijarcsms.com

ISSN 2527-5240 137